Gauge Theory and the Geometric Langlands Program
نویسندگان
چکیده
The Langlands program of number theory, or what we might call Langlands duality, was proposed in more or less its present form by Robert Langlands, in the late 1960s. It is a kind of unified scheme for many results in number theory ranging from quadratic reciprocity, which is hundreds of years old, to modern results such as Andrew Wiles’ proof of Fermat’s last theorem, which involved a sort of special case of the Langlands program. For today, however, I will not assume any prior knowledge of the Langlands program.
منابع مشابه
Electric-Magnetic Duality And The Geometric Langlands Program
The geometric Langlands program can be described in a natural way by compactifying on a Riemann surface C a twisted version of N = 4 super Yang-Mills theory in four dimensions. The key ingredients are electric-magnetic duality of gauge theory, mirror symmetry of sigma-models, branes, Wilson and ’t Hooft operators, and topological field theory. Seemingly esoteric notions of the geometric Langlan...
متن کاملGauge Theory and Wild Ramification
The gauge theory approach to the geometric Langlands program is extended to the case of wild ramification. The new ingredients that are required, relative to the tamely ramified case, are differential operators with irregular singularities, Stokes phenomena, isomonodromic deformation, and, from a physical point of view, new surface operators associated with higher order singularities.
متن کاملGeometric Langlands duality and the equations of Nahm and Bogomolny
This paper is intended as an introduction to the gauge theory approach [15] to the geometric Langlands correspondence. But, rather than a conventional overview, which I have attempted elsewhere [25, 26], the focus here is on understanding a very particular result, which I learned of from [13]. (Another standard reference on closely related matters is [17].) This introduction is devoted to descr...
متن کاملGeometric Langlands From Six Dimensions
Geometric Langlands duality is usually formulated as a statement about Riemann surfaces, but it can be naturally understood as a consequence of electric-magnetic duality of four-dimensional gauge theory. This duality in turn is naturally understood as a consequence of the existence of a certain exotic supersymmetric conformal field theory in six dimensions. The same six-dimensional theory also ...
متن کاملA Note on Quantum Geometric Langlands Duality, Gauge Theory, and Quantization of the Moduli Space of Flat Connections
Montonen-Olive duality implies that the categories of A-branes on the moduli spaces of Higgs bundles on a Riemann surface C for groups G and G are equivalent. We reformulate this as a statement about categories of B-branes on the quantized moduli spaces of flat connections for groups GC and GC. We show that it implies the statement of the Quantum Geometric Langlands duality with a purely imagin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005